Spectral clustering and the high-dimensional stochastic blockmodel
نویسندگان
چکیده
منابع مشابه
Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel
Spectral clustering is a fast and popular algorithm for finding clusters in networks. Recently, Chaudhuri et al. [1] and Amini et al. [2] proposed inspired variations on the algorithm that artificially inflate the node degrees for improved statistical performance. The current paper extends the previous statistical estimation results to the more canonical spectral clustering algorithm in a way t...
متن کاملPerfect clustering for stochastic blockmodel graphs via adjacency spectral embedding
Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degreecorrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph ...
متن کاملSpectral clustering and the high-dimensional Stochastic Block Model
Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the structure of several empirical networks. Spectral clustering is a popular and computationally feasibl...
متن کاملCo-clustering for directed graphs: the Stochastic co-Blockmodel and spectral algorithm Di-Sim
Directed graphs have asymmetric connections, yet the current graph clustering methodologies cannot identify the potentially global structure of these asymmetries. We give a spectral algorithm called di-sim that builds on a dual measure of similarity that correspond to how a node (i) sends and (ii) receives edges. Using di-sim, we analyze the global asymmetries in the networks of Enron emails, p...
متن کاملThe Highest Dimensional Stochastic Blockmodel with a Regularized Estimator
This paper advances the high dimensional frontier for network clustering. In the high dimensional Stochastic Blockmodel for a random network, the number of clusters (or blocks) K grows with the number of nodes N . Previous authors have studied the statistical estimation performance of spectral clustering and the maximum likelihood estimator under the high dimensional model. These authors do not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2011
ISSN: 0090-5364
DOI: 10.1214/11-aos887